Acta Crystallographica Section E **Structure Reports** Online

ISSN 1600-5368

{2-Ethoxy-6-[2-(piperidinium-1-yl)ethyliminomethyl]phenolato}diiodidozinc(II)

Jing-Yan Li

Department of Chemistry, Baicheng Normal College, Baicheng 137000, People's Republic of China

Correspondence e-mail: lijingyan56@126.com

Received 12 November 2009; accepted 15 November 2009

Key indicators: single-crystal X-ray study; T = 298 K; mean σ (C–C) = 0.008 Å; R factor = 0.028; wR factor = 0.068; data-to-parameter ratio = 20.9.

The title Schiff base complex, $[ZnI_2(C_{16}H_{24}N_2O_2)]$, is a mononuclear zinc(II) compound. The Zn atom is fourcoordinated in a distorted tetrahedral geometry by one phenolate O atom and one imine N atom of the Schiff base ligand and by two iodide ions. In the crystal structure, molecules are linked through intermolecular N-H···O hydrogen bonds, forming chains running along the *a* axis.

Related literature

For background to the applications of Schiff bases, see: Averseng et al. (2001); Patra et al. (2002); Chen et al. (2003); Ruck & Jacobsen (2002). For the structures of related Schiff base zinc complexes, see: Wei et al. (2007); Zhu, Yang et al. (2009); Zhu, Yin, Li et al. (2009); Zhu, Yin, Yang et al. (2009).

Experimental

Crystal data

 $[ZnI_2(C_{16}H_{24}N_2O_2)]$ $M_r = 595.54$ Orthorhombic, Pna21 a = 13.5934 (10) Åb = 10.2381 (8) Å c = 14.7871 (11) Å

V = 2057.9 (3) Å³ Z = 4Mo $K\alpha$ radiation $\mu = 4.20 \text{ mm}^{-1}$ T = 298 K $0.18 \times 0.17 \times 0.17 \; \mathrm{mm}$

metal-organic compounds

 $R_{\rm int} = 0.029$

11751 measured reflections

4438 independent reflections 3763 reflections with $I > 2\sigma(I)$

Data collection

Refinement

$R[F^2 > 2\sigma(F^2)] = 0.028$	H atoms treated by a mixture of
$wR(F^2) = 0.068$	independent and constrained
S = 1.02	refinement
4438 reflections	$\Delta \rho_{\rm max} = 0.58 \text{ e} \text{ Å}^{-3}$
212 parameters	$\Delta \rho_{\rm min} = -0.88 \ {\rm e} \ {\rm \AA}^{-3}$
2 restraints	Absolute structure: Flack (1983),
	2111 Friedel pairs
	Flack parameter: 0.02 (2)

Table 1

Selected bond lengths (Å).

Zn1-O1	1.950 (2)	Zn1-I1	2.5448 (9)
Zn1-N1	2.021 (3)	Zn1-I2	2.5651 (9)

Table 2			
Hydrogen-bond	geometry	(Å,	°).

$D - H \cdot \cdot \cdot A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdot \cdot \cdot A$
$\begin{array}{c} N2 - H2 \cdots O2^{i} \\ N2 - H2 \cdots O1^{i} \end{array}$	0.90(4)	2.61 (5)	3.237 (5)	127 (4)
	0.90(4)	2.01 (5)	2.867 (5)	159 (5)

Symmetry code: (i) $x + \frac{1}{2}, -y + \frac{3}{2}, z$.

Data collection: SMART (Bruker, 2002); cell refinement: SAINT (Bruker, 2002); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXL97.

The author thanks Baicheng Normal College for support of this work.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: SJ2684).

References

- Averseng, F., Lacroix, P. G., Malfant, I., Périssé, N. & Lepetit, C. (2001). Inorg. Chem. 40, 3797-3804.
- Bruker (2002). SAINT and SMART. Bruker AXS Inc., Madison, Wisconsin, USA.
- Chen, C., Huang, D., Zhang, X., Chen, F., Zhu, H., Liu, Q., Zhang, C., Liao, D., Li, L. & Sun, L. (2003). Inorg. Chem. 42, 3540-3548.
- Flack, H. D. (1983). Acta Cryst. A39, 876-881.
- Patra, A. K., Olmstead, M. M. & Mascharak, P. K. (2002). Inorg. Chem. 41, 5403-5409
- Ruck, R. T. & Jacobsen, E. N. (2002). J. Am. Chem. Soc. 124, 2882-2883.
- Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Wei, Y.-J., Wang, F.-W. & Zhu, Q.-Y. (2007). Acta Cryst. E63, m654-m655.
- Zhu, X.-W., Yang, X.-Z., Zhang, C.-X., Li, G.-S. & Yin, Z.-G. (2009). Acta Cryst. E65, m1332-m1333.
- Zhu, X.-W., Yin, Z.-G., Li, G.-S., Yang, X.-Z. & Zhang, C.-X. (2009). Acta Cryst. E65, m1226-m1227.
- Zhu, X.-W., Yin, Z.-G., Yang, X.-Z., Li, G.-S. & Zhang, C.-X. (2009). Acta Cryst. E65, m1293-m1294.

Acta Cryst. (2009). E65, m1611 [doi:10.1107/S1600536809048491]

{2-Ethoxy-6-[2-(piperidinium-1-yl)ethyliminomethyl]phenolato}diiodidozinc(II)

J.-Y. Li

Comment

Schiff bases are versatile ligands for the preparation in the preparation of metal complexes (Averseng *et al.*, 2001; Patra *et al.*, 2002; Chen *et al.*, 2003; Ruck & Jacobsen, 2002). In this paper, the new zinc(II)title complex with the Schiff base ligand 2-ethoxy-6-[(2-piperidin-1-ylethylimino)methyl]phenol is reported.

In the title complex, Fig. 1, the Zn atom is four-coordinated by one phenolate O and one imine N atoms of the Schiff base ligand, and by two iodide atoms, forming a tetrahedral coordination. The coordinate bond lengths (Table 1) and angles are comparable to those of similar zinc complexes (Wei *et al.*, 2007; Zhu, Yang *et al.*, 2009; Zhu, Yin, Li *et al.*, 2009; Zhu, Yin, Yang *et al.*, 2009).

In the crystal structure, molecules are linked through intermolecular N—H…O hydrogen bonds (Table 2), forming chains running along the *a* axis (Fig. 2).

Experimental

2-Ethoxysalicylaldehyde (1.0 mmol, 166 mg), 2-piperidin-1-ylethylamine (1.0 mmol, 128 mg), and ZnI_2 (1.0 mmol, 319 mg) were mixed in a methanol solution (50 ml). The mixture was stirred at reflux for 30 min to give a colourless solution. The solution was left in air for a few days, yielding colourless block-shaped crystals.

Refinement

The H2 atom was located from a difference Fourier map and refined isotropically, with U_{iso} restrained to 0.08 Å². Other H atoms were constrained to ideal geometries, with d(C-H) = 0.93-0.97 Å, and with $U_{iso}(H) = 1.2U_{eq}(C)$, $1.5U_{eq}(C_{methyl})$.

Figures

Fig. 1. The molecular structure of the title compound, with 30% displacement ellipsoids for non-hydrogen atoms.

Fig. 2. The molecular packing of the title compound, viewed along the b axis. Intermolecular hydrogen bonds are shown as dashed lines.

{2-Ethoxy-6-[2-(piperidinium-1-yl)ethyliminomethyl]phenolato}diiodidozinc(II)

Crystal data

$[ZnI_2(C_{16}H_{24}N_2O_2)]$	$F_{000} = 1144$
$M_r = 595.54$	$D_{\rm x} = 1.922 {\rm ~Mg~m^{-3}}$
Orthorhombic, <i>Pna</i> 2 ₁	Mo <i>K</i> α radiation, $\lambda = 0.71073$ Å
Hall symbol: P 2c -2n	Cell parameters from 4921 reflections
a = 13.5934 (10) Å	$\theta = 2.4 - 27.9^{\circ}$
b = 10.2381 (8) Å	$\mu = 4.20 \text{ mm}^{-1}$
c = 14.7871 (11) Å	T = 298 K
V = 2057.9 (3) Å ³	Block, colourless
Z = 4	$0.18 \times 0.17 \times 0.17 \text{ mm}$

Data collection

Bruker SMART CCD area-detector diffractometer	4438 independent reflections
Radiation source: fine-focus sealed tube	3763 reflections with $I > 2\sigma(I)$
Monochromator: graphite	$R_{\rm int} = 0.029$
T = 298 K	$\theta_{\text{max}} = 27.0^{\circ}$
ω scans	$\theta_{\min} = 2.4^{\circ}$
Absorption correction: multi-scan (SADABS; Sheldrick, 1996)	$h = -16 \rightarrow 17$
$T_{\min} = 0.518, T_{\max} = 0.535$	$k = -9 \rightarrow 13$
11751 measured reflections	$l = -18 \rightarrow 18$

Refinement

Refinement on F^2	Hydrogen site location: inferred from neighbouring sites
Least-squares matrix: full	H atoms treated by a mixture of independent and constrained refinement
$R[F^2 > 2\sigma(F^2)] = 0.028$	$w = 1/[\sigma^2(F_o^2) + (0.0339P)^2]$ where $P = (F_o^2 + 2F_c^2)/3$

$wR(F^2) = 0.068$	$(\Delta/\sigma)_{\rm max} = 0.001$
<i>S</i> = 1.02	$\Delta \rho_{max} = 0.58 \text{ e} \text{ Å}^{-3}$
4438 reflections	$\Delta \rho_{min} = -0.88 \text{ e} \text{ Å}^{-3}$
212 parameters	Extinction correction: none
2 restraints	Absolute structure: Flack (1983), 2111 Friedel pairs
Primary atom site location: structure-invariant direct methods	Flack parameter: 0.02 (2)

Secondary atom site location: difference Fourier map

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (A^2)

	x	у	Ζ	$U_{\rm iso}*/U_{\rm eq}$
Zn1	-0.02523 (3)	0.78151 (4)	0.73753 (7)	0.03660 (10)
I1	-0.07635 (3)	0.89935 (4)	0.881593 (19)	0.05811 (13)
12	-0.07707 (3)	0.89530 (5)	0.590518 (18)	0.06408 (15)
N1	0.1209 (2)	0.7453 (3)	0.7350 (4)	0.0383 (6)
N2	0.2829 (3)	0.9941 (4)	0.8503 (2)	0.0380 (8)
01	-0.06258 (15)	0.5977 (2)	0.7346 (4)	0.0386 (5)
O2	-0.1483 (3)	0.3910 (3)	0.6564 (2)	0.0567 (9)
C1	0.1005 (3)	0.5138 (4)	0.7039 (3)	0.0405 (10)
C2	-0.0040 (3)	0.5075 (4)	0.7033 (3)	0.0373 (9)
C3	-0.0463 (4)	0.3937 (4)	0.6658 (4)	0.0491 (11)
C4	0.0100 (5)	0.2871 (5)	0.6416 (4)	0.0660 (15)
H4	-0.0202	0.2112	0.6210	0.079*
C5	0.1109 (5)	0.2932 (5)	0.6478 (4)	0.0677 (16)
Н5	0.1485	0.2207	0.6322	0.081*
C6	0.1556 (4)	0.4029 (5)	0.6762 (3)	0.0549 (13)
H6	0.2240	0.4063	0.6778	0.066*
C7	0.1560 (3)	0.6312 (4)	0.7217 (3)	0.0415 (12)
H7	0.2241	0.6229	0.7238	0.050*
C8	0.1907 (3)	0.8546 (4)	0.7423 (5)	0.0457 (9)
H8A	0.1612	0.9329	0.7174	0.055*
H8B	0.2495	0.8349	0.7078	0.055*
C9	0.2174 (3)	0.8774 (4)	0.8385 (3)	0.0417 (10)
H9A	0.2506	0.8007	0.8619	0.050*
H9B	0.1578	0.8901	0.8735	0.050*

C10	0.2269 (4)	1.1197 (4)	0.8443 (4)	0.0549 (12)
H10A	0.1750	1.1199	0.8893	0.066*
H10B	0.1965	1.1265	0.7851	0.066*
C11	0.2937 (5)	1.2366 (5)	0.8595 (4)	0.0739 (17)
H11A	0.3412	1.2418	0.8106	0.089*
H11B	0.2547	1.3159	0.8586	0.089*
C12	0.3470 (5)	1.2274 (6)	0.9474 (4)	0.0751 (17)
H12A	0.3002	1.2320	0.9968	0.090*
H12B	0.3921	1.3003	0.9532	0.090*
C13	0.4043 (5)	1.0991 (6)	0.9531 (5)	0.0674 (16)
H13A	0.4553	1.0984	0.9073	0.081*
H13B	0.4357	1.0927	1.0118	0.081*
C14	0.3384 (4)	0.9850 (5)	0.9397 (3)	0.0504 (12)
H14A	0.2916	0.9807	0.9891	0.060*
H14B	0.3772	0.9055	0.9405	0.060*
C15	-0.1804 (5)	0.4628 (8)	0.5756 (4)	0.083 (2)
H15A	-0.2514	0.4725	0.5771	0.099*
H15B	-0.1516	0.5495	0.5764	0.099*
C16	-0.1523 (7)	0.3969 (10)	0.4922 (6)	0.126 (4)
H16A	-0.0819	0.3911	0.4889	0.189*
H16B	-0.1764	0.4456	0.4413	0.189*
H16C	-0.1800	0.3107	0.4914	0.189*
H2	0.333 (3)	0.987 (6)	0.811 (3)	0.080*

Atomic displacement parameters (\AA^2)

	U^{11}	U ²²	U ³³	U^{12}	U^{13}	U^{23}
Zn1	0.02854 (19)	0.0357 (2)	0.0455 (2)	-0.00197 (15)	0.0007 (4)	-0.0052 (4)
I1	0.0524 (3)	0.0591 (2)	0.0628 (3)	-0.0002 (2)	0.0065 (2)	-0.0281 (2)
12	0.0628 (4)	0.0766 (3)	0.0528 (3)	0.0076 (2)	0.0024 (2)	0.0169 (2)
N1	0.0261 (13)	0.0474 (16)	0.0414 (15)	-0.0071 (11)	-0.003 (3)	0.002 (3)
N2	0.0350 (19)	0.0452 (19)	0.0338 (18)	-0.0077 (16)	-0.0043 (15)	-0.0033 (15)
01	0.0316 (12)	0.0381 (13)	0.0460 (13)	-0.0049 (9)	0.007 (2)	-0.005 (2)
O2	0.059 (2)	0.053 (2)	0.058 (2)	-0.0245 (15)	0.0061 (18)	-0.0095 (16)
C1	0.040 (2)	0.045 (2)	0.037 (2)	0.0128 (19)	-0.0005 (16)	0.0015 (17)
C2	0.042 (2)	0.034 (2)	0.036 (2)	0.0008 (18)	0.0030 (16)	0.0012 (15)
C3	0.062 (3)	0.039 (3)	0.046 (3)	-0.006 (2)	0.007 (2)	-0.004 (2)
C4	0.096 (5)	0.038 (3)	0.064 (4)	-0.002 (3)	0.009 (3)	-0.006 (2)
C5	0.092 (5)	0.045 (3)	0.067 (4)	0.028 (3)	0.006 (3)	-0.009 (3)
C6	0.058 (3)	0.060 (3)	0.047 (3)	0.025 (2)	0.002 (2)	0.000 (2)
C7	0.0279 (18)	0.061 (2)	0.036 (3)	0.0033 (16)	-0.0049 (18)	-0.004 (2)
C8	0.0343 (18)	0.055 (2)	0.048 (2)	-0.0151 (16)	-0.001 (3)	0.001 (4)
C9	0.037 (2)	0.044 (2)	0.045 (2)	-0.0062 (19)	-0.0032 (19)	0.0025 (18)
C10	0.067 (3)	0.049 (3)	0.049 (3)	0.008 (2)	-0.011 (3)	-0.002 (2)
C11	0.118 (5)	0.046 (3)	0.058 (3)	-0.005 (3)	-0.015 (3)	-0.002 (2)
C12	0.110 (5)	0.059 (3)	0.056 (3)	-0.020 (3)	-0.014 (3)	-0.007 (3)
C13	0.058 (4)	0.084 (4)	0.060 (4)	-0.019 (3)	-0.014 (3)	-0.012 (3)
C14	0.047 (3)	0.059 (3)	0.046 (3)	0.002 (2)	-0.017 (2)	0.000 (2)

C15	0.050 (4)	0.122 (6)	0.076 (4)	-0.021 (4)	0.002 (3)	-0.030 (4)	
C16	0.073 (5)	0.214 (12)	0.091 (5)	0.007 (6)	-0.018 (5)	-0.051 (6)	
Geometric para	meters (Å, °)						
Zn1—O1		1.950 (2)	C8—H8A		0.9700		
Zn1—N1		2.021 (3)	C8-	H8B	0.9700		
Zn1—I1		2,5448 (9)	C9—H9A		0.9700		
Zn1—I2		2.5651 (9)	С9-	C9—H9B		0.9700	
N1—C7		1.277 (5)	C10)—C11	1.5	20 (7)	
N1—C8		1.471 (4)	C10	C10—H10A		700	
N2-C10		1.498 (6)	C10)—H10B	0.9	700	
N2—C9		1.500 (5)	C11	I—C12	1.4	91 (8)	
N2-C14		1.524 (5)	C11	I—H11A	0.9	700	
N2—H2		0.90 (4)	C11	I—H11B	0.9	700	
O1—C2		1.304 (5)	C12	2—С13	1.5	29 (8)	
O2—C3		1.394 (6)	C12	2—H12A	0.9	700	
O2—C15		1.470 (8)	C12	2—H12B	0.9	700	
C1—C6		1.421 (6)	C13	3—C14	1.4	85 (7)	
C1—C2		1.421 (6)	C13	3—H13A	0.9	700	
C1—C7		1.444 (6)	C13	3—H13B	0.9	700	
С2—С3		1.412 (6)	C14	4—H14A	0.9	700	
C3—C4		1.381 (7)	C14	4—H14B	0.9	700	
C4—C5		1.376 (9)	C15	5—C16	1.4	57 (9)	
C4—H4		0.9300	C15	5—H15A	0.9	700	
C5—C6		1.345 (7)	C15	5—H15B	0.9	700	
С5—Н5		0.9300	C16	6—H16A	0.9	600	
С6—Н6		0.9300	C16	6—H16B	0.9	600	
С7—Н7		0.9300	C16	6—H16C	0.9	600	
C8—C9		1.486 (8)					
O1—Zn1—N1		94.50 (10)	N2-	—С9—Н9А	109	0.1	
O1—Zn1—I1		113.89 (16)	C8-	—С9—Н9В	109	0.1	
N1—Zn1—I1		111.78 (16)	N2-	—С9—Н9В	109	0.1	
O1—Zn1—I2		110.37 (17)	H94	А—С9—Н9В	107	7.8	
N1—Zn1—I2		109.73 (17)	N2-		111	.3 (4)	
I1—Zn1—I2		114.776 (17)	N2-		109	0.4	
C7—N1—C8		117.8 (3)	C11	L—C10—H10A	109	0.4	
C7—N1—Zn1		122.5 (3)	N2-	—С10—Н10В	109	0.4	
C8—N1—Zn1		119.5 (2)	C11	L—C10—H10B	109	0.4	
C10—N2—C9		112.0 (3)	H10	DA—C10—H10B	108	3.0	
C10—N2—C14		110.8 (4)	C12	2—C11—C10	111	.7 (5)	
C9—N2—C14		110.3 (3)	C12	2—С11—Н11А	109	0.3	
C10—N2—H2		115 (4)	C10)—С11—Н11А	109	0.3	
C9—N2—H2	C9—N2—H2 108 (4)		C12	C12—C11—H11B		109.3	
C14—N2—H2		101 (4)	C10)—C11—H11B	109	0.3	
C2—O1—Zn1		122.1 (2)	H11	H11A—C11—H11B		107.9	
C3—O2—C15		111.5 (4)	C11	I—C12—C13	110	0.5 (5)	
C6—C1—C2		119.3 (4)	C11	I—C12—H12A	109	0.6	
C6—C1—C7		116.2 (4)	C13	3—С12—Н12А	109	9.6	

C2—C1—C7	124.1 (4)	C11—C12—H12B	109.6
O1—C2—C3	118.4 (4)	C13—C12—H12B	109.6
O1—C2—C1	125.1 (4)	H12A—C12—H12B	108.1
C3—C2—C1	116.5 (4)	C14—C13—C12	111.2 (5)
C4—C3—O2	120.7 (4)	C14—C13—H13A	109.4
C4—C3—C2	121.9 (5)	С12—С13—Н13А	109.4
O2—C3—C2	117.4 (4)	C14—C13—H13B	109.4
C5—C4—C3	120.0 (5)	C12—C13—H13B	109.4
С5—С4—Н4	120.0	H13A—C13—H13B	108.0
С3—С4—Н4	120.0	C13—C14—N2	111.5 (4)
C6—C5—C4	120.6 (5)	C13-C14-H14A	109.3
С6—С5—Н5	119.7	N2-C14-H14A	109.3
С4—С5—Н5	119.7	C13—C14—H14B	109.3
C5—C6—C1	121.3 (5)	N2-C14-H14B	109.3
С5—С6—Н6	119.4	H14A—C14—H14B	108.0
С1—С6—Н6	119.4	C16—C15—O2	112.3 (7)
N1—C7—C1	126.5 (4)	С16—С15—Н15А	109.1
N1—C7—H7	116.8	O2-C15-H15A	109.1
С1—С7—Н7	116.8	C16—C15—H15B	109.1
N1—C8—C9	110.4 (5)	O2—C15—H15B	109.1
N1—C8—H8A	109.6	H15A—C15—H15B	107.9
С9—С8—Н8А	109.6	С15—С16—Н16А	109.5
N1—C8—H8B	109.6	C15—C16—H16B	109.5
С9—С8—Н8В	109.6	H16A—C16—H16B	109.5
H8A—C8—H8B	108.1	C15—C16—H16C	109.5
C8—C9—N2	112.5 (3)	H16A—C16—H16C	109.5
С8—С9—Н9А	109.1	H16B—C16—H16C	109.5

Hydrogen-bond geometry (Å, °)

D—H···A	<i>D</i> —Н	$H \cdots A$	$D \cdots A$	$D -\!\!\!-\!\!\!\!- \!$
N2—H2···O2 ⁱ	0.90 (4)	2.61 (5)	3.237 (5)	127 (4)
N2—H2···O1 ⁱ	0.90 (4)	2.01 (5)	2.867 (5)	159 (5)
Symmetry codes: (i) $x+1/2, -y+3/2, z$.				

